

Geosyntec^D

consultants

gippore Legiontists Lippovete

Automated Assessment of Statistic Features to Facilitate Geotechnical Site Characterization and Design in Large Transportation Projects in Louisiana

Xin Peng, Ph.D., P.E., Geosyntec Consultants

Jesse G. Rauser, P.E., Louisiana DOTD

October 18, 2022

The 51st Annual Southeastern Transportation Geotechnical Engineering Conference (STGEC)

Outline

- LADOTD's Data Management Journey
- A Web-Based Platform to Evolve Geotechnical Site Characterization and Design Practice in Louisiana

LADOTD's

Data Management Journey

Research Projects with LA Transportation Research Center

Contractors Contractors Project Project Project Project Prile Type Test Pile
Control Control
Navigation Form X ILADOTD Test Pile Database Item Project Name Filter Records By: Project Name Project Name Value Date All piles/projects Pile Type Test Pile
Filter Records By: Project Name Date All piles/projects
Filter Records By: Project Name 🔹 🗸 Date All piles/projects 🔹 Pile Type Test Pile 💌
Contractors
Project Tickfaw River & Relief Bridges Pile Name TP-02 Type 16" Solid Sq. PPC Length (ft) 50.00
Pile Info Test Events Gates Equation Setup Summary
Type Test Pile Date Driven 7/11/2012 Hammer APE D 30-32 Designer JGR
Location Elevation (ft) Loads (tons) Misc
Latitude 🚺 30.929956 Ground Surface 213.39 Factored Load 108.0 Setup Factor (A)
Longitude -90.67848 Scour 195.97 Resistance Factor 0.80 Modulus [ksi] 6437
Station Bottom of Casing 195.97 Design Load Soil Type at Tip
Nearest Boring B-4 Pile Cutoff 223.29 Target Capacity 249.0
Nearest CPT EOD Tip 173.29 Instrumented
Design Tip 168.29 LRFD Design 🗹
Notes
Top 5' of pile cut off for load test
Record: M < 1 of 99 > M > Filtered Search
2/
1991m
Local intranet + 100% +

- 03-IGT: Geotechnical Database Phase I (2003-2008)
 - Create database for existing, current, & new records
 - GIS system with scanned images of boring logs
 - 10-2GT: Geotechnical Database Phase II (2010-2012)
 - Standardize the LADOTD gINT project format / Boring log format
 - GIS system to create boring logs & plots in real time
- 15-1GT: Geotechnical Database Phase III (2015-2018)
 - Migrate to HoleBase + include test pile database
 - 21-2GT: Geotechnical Database Phase IV (2021-present)
 - Migrate as much existing data as possible (in-house/consultant gINT, images)

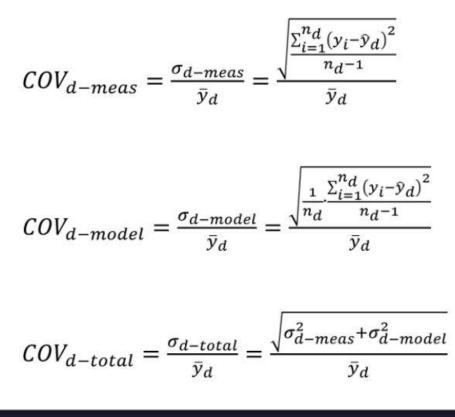
Data Management Goals

WHERE WE ARE/WERE

- Borehole & lab tests logged on paper: project, boring, sample, etc. re-written multiple times
- Data are received from labs in multiple formats
- Data are stored on a project-by-project basis, not easily retrieved based on proximity to other projects
- Borings, CPTs, load tests, etc. are typically siloed and only looked at together on the project
- For LRFD, "sites" are based on judgement, ϕ selection based on field verification
- Even when we have data, we often still have to manipulate it excessively

WHERE WE WOULD LIKE TO BE

- Log boring on tablet, begin digital chain of custody that continues throughout lab testing
- Exchange data in standardized format (DIGGS)
- House data in centralized database, reuse as much as possible (\$15k per deep boring, 10x that for SLT)
- Get multiple types of data in the same database for easy comparison → automated calibrations?
- Characterize sites based on variability & uncertainty using defensible, repeatable methods
- Develop tools to eliminate tedious plotting & analysis focus more on decision making


Implementation: Site Characterization

- Current resistance factor selection based on field verification
 - This doesn't scale!
 - This tends to leave sources of risk up to "engineering judgement"
 - Is this reproducible and defensible?
- What about variability & uncertainty in the geotechnical properties?
 - See MoDOT drilled shaft research
- GEC No. 5 proposes a rational approach by limiting COV in the geotechnical data

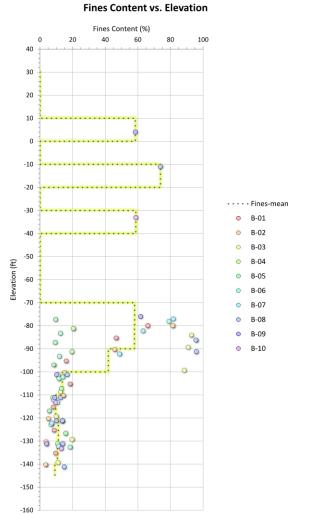
ф	Field Verification Requirement
0.80	Static load test + 2% verification
0.75	Dynamic monitoring 100% of piles
0.65	2% verification only
0.50	Static design + LA modified Gates eqn. (local calibration)

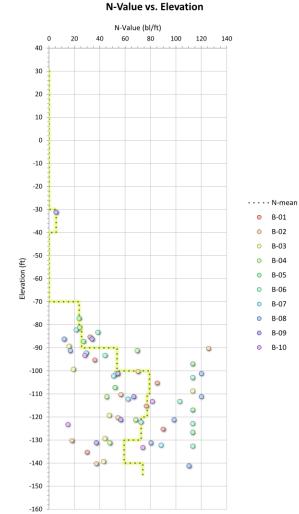
Implementation: Site Characterization

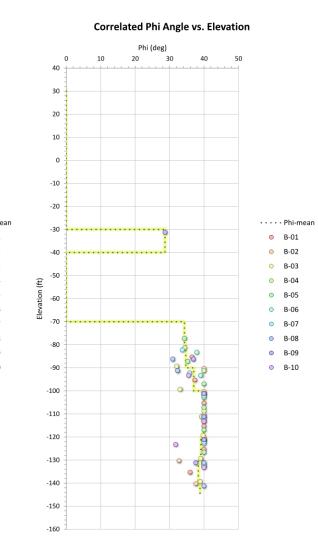
- GEC No. 5 recommends $COV_{model} < 0.3$
- Calculations are complicated by the need to combine data from multiple borings and analyze at various depths
 - This is where we usually fall back on "engineering judgment"
- A major obstacle to risk-based geotechnical analysis is a lack of data management
 - If we standardize the data, we can standardize the tools

From FHWA NHI-16-072 (GEC No. 5)

Site Characterization

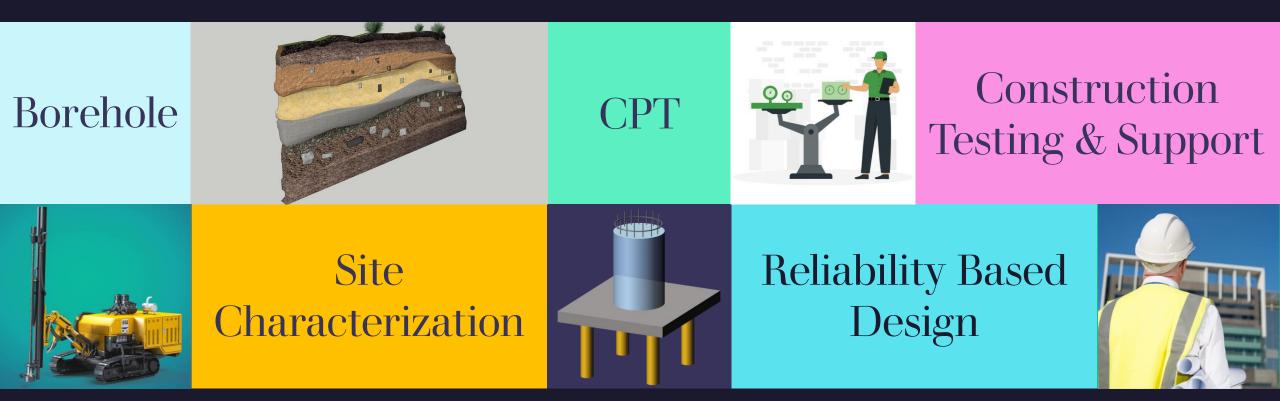

- Query database using Excel plugin
- Once in Excel, we can do conversions, correlations, & other math
 - Since the data are standardized, it works the same way every time
- Let the user select various correlation & plotting options
- Choose soil strata and statistical analyses are automatically updated


		ft	ksf	ksf			%	pcf	%	
Projects	Stratum	Top/Bot	Depth	Su	σ _{dSu-} model	COV _{Su-}	W	Ywet	Fines	□ ×
	1	30	0	1.25	0.14	11%	29	121	#DIV/0E	
125	1	20	10	1.25	0.14	11%	29	121	#DIV/01	
A	2	20	10	1.14	0.13	11%	31	120		. M
1 Settings	2	10	20	1.14	0.13	11%	31	120		
2 Default	3	10	20	1.04	0.29	28%	35	117	58	
3 N-Value 4 SPT-Phi	3	0	30	1.04	0.29	28%	35	117	58	
5 SHANSE	4	0	30	0.85	0.08	10%	41	114		
6 SHANSE	4	-10	40	0.85	0.08	10%	41	114		
7 Auto Ch	5	-10	40	1.34	0.31	23%	39	115	74	
8	5	-20	50	1.34	0.31	23%	39	115	74	
9	6	-20	50	1.12	0.07	6%	39	114		se in Plots
10	6	-30	60	1.12	0.07	6%	39	114		96
Boring	7	-30	60	1.35	0.16	12%	36	117	59	used Nused
11	7	-40	70	1.35	0.16	12%	36	117	59	
12 B-01 13 B-02	8	-40	70	1.28	0.09	7%	44	111		14.0 72 15.0 68
13 B-02	8	-50	80	1.28	0.09	7%	44	111		10.0 68
15 B-04	9	-50	80	1.64	0.21	13%	41	114	#D)V/01	8.0 72
16 B-05	9	-60	90	1.64	0.21	13%	41	114	#D\V/01	8.0 68
17 B-06	10	-60	90	1.45	0.11	7%	43	112		10.0 68
18 B-07	10	-70	100	1.45	0.11	7%	43	112		13.0 68
19 B-08 20 B-09	11	-70	100	1.77	0.25	14%	32	121	58	7.0 72 10.0 68
20 B-09 21 B-10	11	-80	110	1.77	0.25	14%	32	121	58	10.0 68 5.0 74
	12	-80	110	2.46	1.19	48%	26	123	58	Cancel
	12	-90	120	2.46	1.19	48%	26	123	58	ouncer
	13	-90	120	3.35	0.91	27%	26	120	42	
	13	-100	130	3.35	0.91	27%	26	120	42	



Geotechnical Data Plots

LA-1: Port Al



6/21/2022

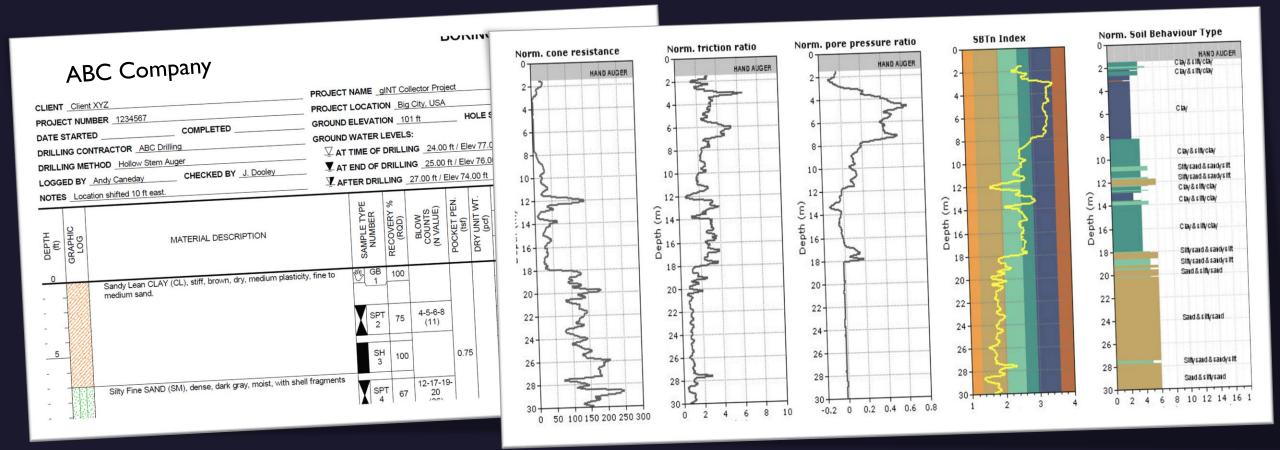
How about if engineers can efficiently and interactively manipulate, visualize, and interpret different types of geotechnical data from any device with a web browser?

The Implementation of a web-based platform for ...

Key Objectives

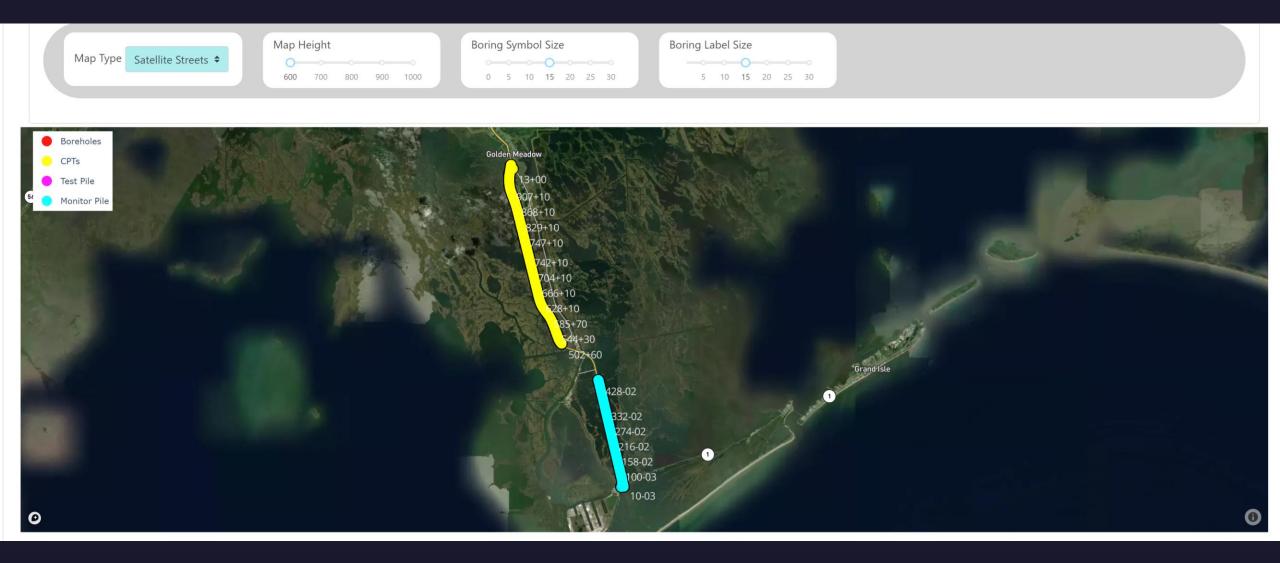
Identify Variability and Uncertainty

Reduce Design Costs



Increase Design Efficiency

Improve Design Quality



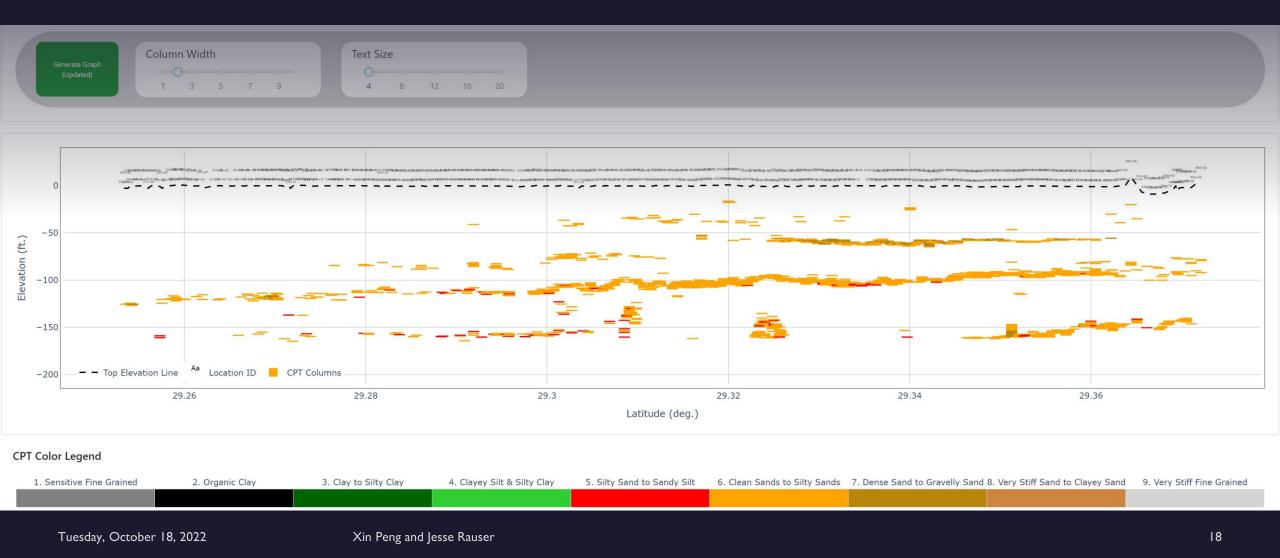
Typical Borehole and CPT Deliverables

- Good for archive, but no digital data embedded;
- Cannot be reused efficiently for engineering design analysis.

Interactive web-based map for borehole, CPT, and construction testing locations

Tuesday, October 18, 2022

Select point locations in the web-based map to interactively visualize any borehole cross sections



Interactively add and visualize any nearby CPT data on top of the borehole cross sections

Generate a cross section with more than 300 CPTs in a few minutes

Implement user-defined rules to identify critical soil layers to design decisions

Develop Soil Design Models and Select Soil Design Parameters

×

UNNECESSARILY HIGH CONSTRUCTION COSTS

If selections are substantially less than actual values.

INADEQUATE DESIGN RELIABILITY AGAINST FAILURE

If selected values of design parameters are far greater than actual in-situ values

Interpretation of Variability and Uncertainty for Design Parameters

Variability:

$$COV_{measure} = \frac{\sigma_{measure}}{\overline{y}} = \frac{\sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{n-1}}}{\overline{y}}$$

ncertainty: $COV_{model} = \frac{\sigma_{model}}{\overline{y}} = \frac{\sqrt{\frac{1}{n} \frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{n-1}}}{\overline{y}}$

"Geotechnical design performed using soil parameters established from mean values with $COV_{model} \le 0.3$ are likely to have reliability that practically equals or exceeds the target reliability for design."

Publication No. FHWA NHI-16-072 April 2017

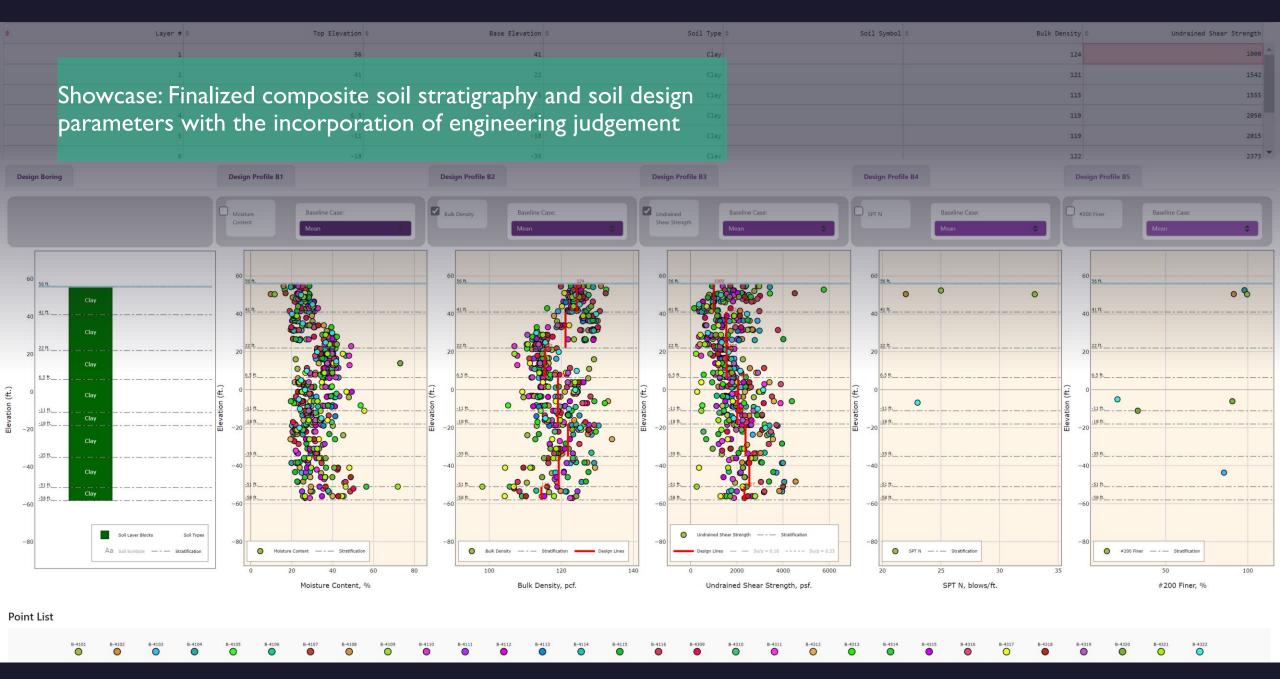
NHI Course No. 132031

Geotechnical Engineering Circular No.5

Geotechnical Site Characterization


Map Type Satellite 🗢	Map Height	Boring Symbol Size	Boring Label Size	CPT Method SBTn, after 1990 \$	
	600 700 800 900 1000	0 5 10 15 20 25 30	5 10 15 20 25 30		
Boreholes CPTs		4			+ 0 11 0 0 0 0 0 0 0 0
			// =	X	
	J. A.				
	55 246	A COLOR			
	the second				

Showcase: An interactive soil boring cross-section profile for a design section of a highway and bridge design and construction project



Showcase: Data profiles for the design section

Showcase: Data profiles with dynamically generated data statistical features and the independently generated soil stratigraphy boundary lines

Tuesday, October 18, 2022

Tuesday, October 18, 2022

Xin Peng and Jesse Rauser

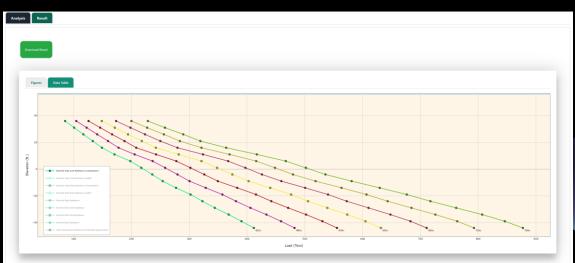
Parametric Analysis Deep for Foundation Design using the same web-based platform

U.S. Department of Transportation Federal Highway Administration Publication No. FHWA-NHI 18-024 FHWA GEC 010 September 2018

NHI Course No. 132014

Drilled Shafts: Construction Procedures and Design Methods

Developed following:


AASHTO LRFD Bridge Design Specifications, 8th Edition, 2018

Step 2: define geometry of drilled shafts

Step 3: Perform analysis and visualize results

Xin Peng and Jesse Rauser

Step 1: Apply the finalized soil design model

Properties Shaft Pr	operties Run Ana	lysis									
Basic Input SPT Con	relation Six Correction										
Water Table Elev. (ft.) 56	Global (D	agradation and Contrac O	tion) Scour Depth, D _a (ft.)		epth, D _{at} (ft.)						
50		0	_		0						
Layer # 0	Top Elevation 🗘 Ba		Top Depth 0	Base Depth © Lay		Soil Type 🗘	Soil Category ©	Bulk Density Ef			Soil 2D Profile
1	56	41	•	15	15	Clay	Cohesive	124	464.1	2000	
2	41	22	15	34	19	Clay	Cohesive	121	1486.5	1541	60 35.075
3	22	6.5	34	49.5	15.5	Clay	Cohesive	115	2456.2	1555	28.05. Chay You (Md) 1 Security 100
4	6.5	-11	40.5	67	17.5	Clay	Cohesive	119	3363.6	2849	a) 5225
5	-11	-18	67	74	7	clay	Cohesive	119	4058	2014	Page (841) 15 59 (842) 15
6	-18	- 35	74	91	17	Clay	Cohesive	121	4761.8	2373	20 ^{22,0} %
7	-35	-51	91	187	16	Clay	Cohesive	119	5722.7	2538	50 (10) 50 (20) (10) 50 (20) (10)
8	-51	-58	187	114	7	Clay	Cohesive	114	6360.3	2327	E 0 Second Secon
											2019 5
											=62 =62 =62
											2045. Cay Sec. 2010
											-80
											-90
											saituyerikata Ali saityee Aa saityeedaa stooffaataa

Tuesday, October 18, 2022

Batch analysis to estimate the axial resistance of the drilled shaft at each borehole location

Fence Diagram with Resistance Contour (South-to-North); Soil Parameter Case: Mean; Diameter of Drilled Shaft (ft): 8.0 78-4216日月29月12日月29月1日、長田四月4207月34396日24 8-42 \$ 439 \$ 184 \$ 42 + 42 1585 4236 Bo473 CL CL CÎL CL CL CL CL 1460 CH CL CI 40 CL CL CH CEL CL CH 1336 сн^{СН} CH SMCH CL SM CL CH CH CFCH сн ссн сн сн сн сн CH CH CH CHC сн сн CH CL CHH CL CH CH CH CH 20 CH CH CH CH 1211 tons CH CHCH CH, SM CH CH TH CHCHH CH CH СНСН CL CH CH CH CH tons (Compression), CH CH CH CH CH SP-SM СН 1087 CL CL CLCL CH CH CL CH СН CL CL CL CL CL CL CL CH CHCH CHEH CL CICI CHCH CL CL-ML CI CH CH Elevation (ft) CLCI 962 CHCH CHELCL CH CH CH 837 СН CH -20 sistance, CL CH 713 CĽ Re 588 CL CH C CH 900 tons @ -44 950 tons @ -47 Axial CL CL CH CH (CH 댽 463 Total -60 ed 339 30.432 30.434 30.436 30.438 Latitude Decimal Tuesday, October 18, 2022

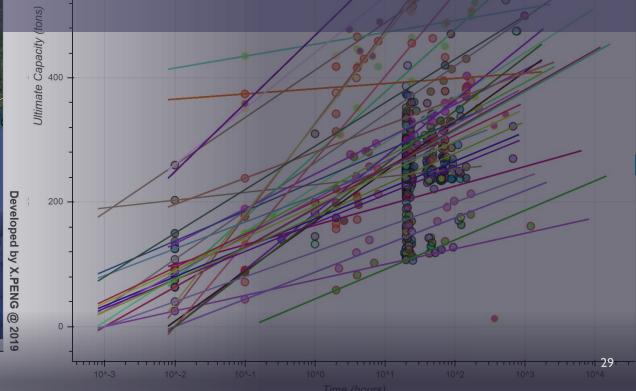
oring Column Resistance Contour - Tip Elevation Lines

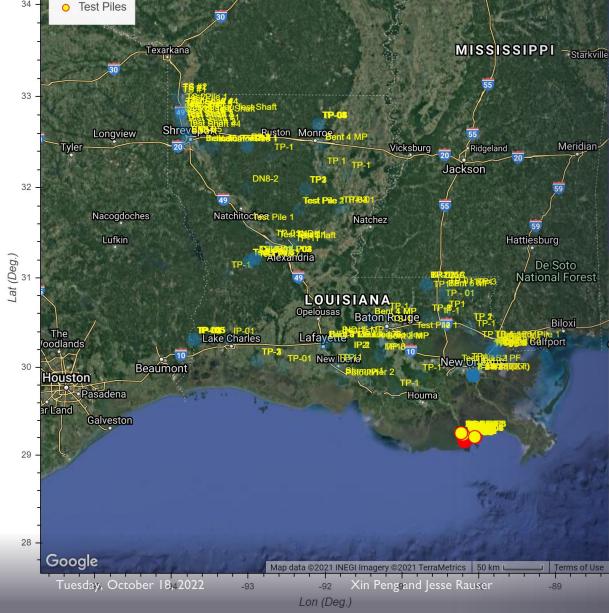
Xin Peng and Jesse Rauser

Google Map

Google Map, Zoom Out ----- Zoom In: 7

Google Map Type:


hybrid


Data Plots

+

Elapsed Time vs Ultimate Capacity Elapsed Time vs End Bearing Skov-Denver A factor

Web-based test pile database to facilitate deep foundation design practice in Louisiana

Summary

Boreholes and CPTs

Digital data can be interactively visualized and interpreted based on project needs.

Site Characterization

Geotechnical design models and soil design parameters can be efficiently developed based on data statistics and specifications from FHWA GEC-05.

Reliability Based Design

The variability and uncertainty of the developed soil design models can be automatically assessed, which can potentially be implemented into the following deep foundation engineering analysis with site-specific resistance factors.

Construction Testing & Support

A preliminary framework of a web-based test pile database has been initiated to visualize and interpret historical data, which also provides a potential to integrate with reliability-based design workflows to automatically calibrate the sitespecific resistance factors for different design methods

Data Interoperability

Data from gINT and DIGGS, or any other SQL (including Bentley's holebase and Openground) and NoSQL databases can be imported into the web-based platform to facilitate site characterization and design practice. No data re-entry is necessary.

Thank You

Xin Peng, Ph.D., P.E.

-

xin.peng@geosyntec.com

Jesse Rauser, P.E.

jesse.rauser@la.gov

0

0

0